Package-level declarations

Types

Link copied to clipboard
class HighDimensionVectorCodec constructor(maxDimensions: Int = DEFAULT_MAX_DIMENSIONS)

Custom codec that supports higher vector dimensions than the default 1024. This enables use of OpenAI embeddings (1536 dimensions) and other large embedding models.

Link copied to clipboard
class LuceneSearchOperations constructor(val name: String, val enhancers: List<<Error class: unknown class>> = emptyList(), embeddingService: <Error class: unknown class>? = null, keywordExtractor: KeywordExtractor? = null, vectorWeight: Double = 0.5, chunkerConfig: <Error class: unknown class> = ContentChunker.Config(), chunkTransformer: <Error class: unknown class> = ChunkTransformer.NO_OP, indexPath: Path? = null) : Closeable

Lucene RAG facet with optional vector search support via an EmbeddingService. Supports both in-memory and disk-based persistence. Implements WritableContentElementRepository so we can add to the store.

Link copied to clipboard
data class LuceneSearchOperationsBuilder(name: String = "lucene-search", embeddingService: <Error class: unknown class>? = null, chunkerConfig: <Error class: unknown class> = ContentChunker.Config(), chunkTransformer: <Error class: unknown class> = ChunkTransformer.NO_OP, indexPath: Path? = null)

Builder for LuceneSearchOperations instances.

Link copied to clipboard
data class LuceneStatistics(val chunkCount: Int, val documentCount: Int, val contentElementCount: Int, val averageChunkLength: Double, val hasEmbeddings: Boolean, val vectorWeight: Double, val isPersistent: Boolean, val indexPath: String?)

Statistics about the Lucene RAG service state